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The major subject of algebraic quantum field theory is the study of nets of local
C*-algebras, i.e., maps 2 j !(2) assigning to each open, relatively compact
region 2 of space-time (M, g) a C*-algebra !(2), whose self-adjoint elements
describe local observables measurable in the region 2. A question discussed
recently in a number of papers is how much information about the geometric
structure of the underlying space-time (M, g) is encoded in the algebraic structure
of the net 2 j !(2). Following these ideas, it is demonstrated in this paper how
space-time-related concepts like causality and observers can be described in a
purely algebraic way, i.e., using only the local algebras !(2). These results are
then used to show how the space-time (M,g) can be reconstructed from the set
+loc : 5 {!(2) | 2 , M open, 2 compact} of local algebras.

1. INTRODUCTION

All possibilities to get information about space-time structure are based

on observations and manipulations of material objects. It is therefore natural

to use this idea as a base for axiomatic foundations of space and time. This

is done, e.g., by Ehlers et al. (1972) using classical particles and light rays

or LaÈ mmerzahl (1990) with classical fields. However, classical matter models

are appropriate only if the large-scale structure of space-time is considered.

For microscopic scales elementary particles are needed as test particles.

ª Observation of material objectsº means in this case the measurement of

local observables of a quantum field theory. These considerations lead in a

natural way to the question of how a unified axiomatic scheme for space-

time and quantum field theory can be formulated.
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The aim of this paper is to present ideas on how some aspects of this

question can be answered. The starting point for this purpose is the algebraic

formulation of quantum field theory [see Haag (1992) for a detailed exposi-
tion]. The basic idea is to describe observables, measurable in a bounded

space-time region 2 by self-adjoint elements of a C*-algebra !(2). The

family (!(2))2 P @(M) of all these local algebras is isotone: 21 , 22 Þ !(21)

, !(22), hence it is a net of C*-algebras indexed by open, relatively compact

subsets of space-time. The latter is described classically, i.e., by a Lorentzian

manifold (M, g). If the structure of space-time, in this case the Lorentzian
manifold (M, g), can be recovered completely from measurements of local

observables A P !(2), it should be possible to reduce all statements about

the geometry of (M, g) to statements about the set of algebras

+loc : 5 {!(2) | 2 P @(M )} (1)

This consideration suggests the idea to use a pair (A1, +loc) consisting

of a C*-algebra A1 and a set of closed, *-subalgebras of A1 [which need not
necessarily have the form of equation (1)] to describe space-time as well as

quantum field theory. Physically an algebra A P +loc describes on the one

hand local observables, measurable in a distinguished space-time region, and

on the other hand this region itself. This interpretation is based on the fact

that it does not make much sense to make differences between two regions

21, 22 of (classical) space-time (M, g) if the corresponding algebras are
identical, since it is not possible to distinguish between 21 and 22 by local

measurements.

This ansatz provides a reasonable basis for space-time concepts which

are more general than general relativity. In particular, we can hope to get a

description of space-time for microscopic length and time scales. However,

it is not clear at all which axioms the set +loc has to fulfil such that physical
concepts like causality, observers, and reference frames can be described in

this new context. A first step to fill this gap is therefore a detailed study of

well-known (and therefore in most cases classical) space-time models to get

formulations of these physical notions in terms of +loc which can be general-

ized later. Therefore we will consider in this paper pairs (A1, +loc) which

are derived from a net (!(2))2 P @(M) as described in equation (1) and we will
demonstrate the ideas outlined up to now with a discussion of causality and

observers in this framework.

2. LOCAL ALGEBRAS

Let us start with a short review of some notions from algebraic quantum

field theory [see Haag (1992) and BaumgaÈ rtel and Wollenberg (1992) for

details]. For this purpose consider the Lorentzian manifold (M, g) and the



Nets of C*-Algebras 377

set @(M ) : 5 {2 , M | 2 open, 2 compact}. A subset @ , @(M ) will be

called a net index set if @ is a base for the topology of M and if each bounded

subset 1 , @ admits a supremum (considering the inclusion relation as an
ordering relation on @). A net of C*-algebras is an isotone family (!(2))2 P @

of C*-algebras, i.e., each !(2) is a C*-algebra and 21 , 22 implies for all

21, 22 P @ that !(21) , !(22) holds. The self-adjoint elements of !(2)

represent, as already mentioned in the introduction, bounded observables

measurable in 2. All !(2) are subalgebras of the algebra of quasilocal
observables ! : 5 ø 2 P @(M)!(2). The net is called additive if !( ø 2 P 12) 5
C* ( ø 2 P 1!(2)) holds for all bounded subsets 1 of @ with sup(1) 5 ø 2 P 12.

The net is called causal if 21 ’ g22 Þ [!(21),!(22)] 5 {0} holds for all 21,

22 P @. Here the binary relation ’ g is given by causal independence of 21

and 22 [see O’ Neill (1983), Ch. 14, for definitions and terminology concerning

the causal structure of Lorentzian manifolds]:

21 ’ g22: Û 22 , M \ (J 1 (21) ø J 2 (21)) (2)

An explicit example for a causal, additive net can be derived from the

free scalar field on a globally hyperbolic Lorentzian manifold (M, g) (Dimock,

1980). In this case the (minimally coupled) Klein±Gordon equation admits

unique advanced and retarded fundamental solutions E 6 : C `
0 (M, R) ® C ` (M,

R). Their difference E : 5 E + 2 E 2 leads to the weakly symplectic vector

space (6, s ) given by 6 : 5 C `
0 (M, R)/ker (E ) and s ([ c 1], [ c 2]) : 5 * M

(E c 1)(x) c 2(x) l g(x), where l g denotes the volume element defined by the

metric. To each 2 P @(M ) we can associate now a subalgebra !(2) of the

CCR-algebra of this symplectic space by

!(2) : 5 C*({W ([ c ]) | supp( c ) , 2}) (3)

where W ([ c ]) denotes the Weyl element associated to [ c ] P 6. The family

of all those algebras forms a causal, additive net of C*-algebras.

3. LATTICES OF ALGEBRAS

In the introduction we have said already that the basic idea of this work

is to reduce all physical statements about space-time structure to statements

about the set

+loc : 5 {!(2) | 2 P @} (4)

where (!(2))2 P @ is an additive, causal net of C*-algebras. If the index set

is in addition small enough such that

21 , 22 Û !(21) , !(22) (5)
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holds, then +loc has the special property that each bounded (obviously +loc

is ordered by inclusion) subset 7 , +loc admits C*( ø A P 7 A) as its supremum.

Hence, if we add the quasilocal algebra and the ª minimal algebraº
ù A P +loc A, we get a complete lattice. This observation leads to the following

definition (Keyl, n.d.-a):

Definition 3.1. A set + of C*-algebras partially ordered by inclusion is

called an additive lattice of C*-algebras if the following conditions are

satisfied:
(i) + is a complete lattice.

(ii) The maximal element A1 and the minimal element A0 are given by

A1 5 C* ( ø A P +loc A) and A0 5 ù A P +loc A), where +loc : 5 +\{A1, A0} is

called the set of local algebras.
(iii) For each subset 7 , + bounded by an +loc { B Þ A1 the supremum

in + is given by sup+ 7 5 C*( ø A P 7 A).

If a net (!(2))2 P @ is given, we can construct + by using equation (4)

and adding A1 and A0 as given in Definition 3.1(ii). This procedure leads

to a lattice only if the net satisfies equation (5). However, if this condition

is not satisfied, we can, in physically relevant cases, always find a smaller

index set @8 , @ such that (5) holds for 21, 22 P @8 [see the discussion
of ª reduced index setsº in BaumgaÈ rtel and Wollenberg (1992) for a method

to construct @]. Hence we can use @8 instead of @ in (4) to construct a

lattice +. Note that the net (!(2))2 P @8 contains the same information as the

original one, since we can reconstruct the algebras !(2) with 2 P @ but

2 ¸ @8 very easily from (!(2))2 P @8 due to additivity. Therefore the necessity

to use a restricted index set @8 in some cases is not a restriction for the just
outlined construction of a lattice from a net [for a more general and detailed

discussion of these topics see Keyl (n.d.-a)].

Let us change now our point of view. Instead of constructing a lattice

from a net, we will start with an additive lattice + of C*-algebras and ask

for a space-time (M, g), an index set @, and a map @ { 2 j !(2) P +loc

such that (!(2))2 P @ is an additive, causal net of C*-algebras from which +
arises as just described. We have mentioned already that the latter is possible

only if the index set @ satisfies equation (5), i.e., if the map ! is invertible.

This fact leads to the following definition (Keyl, n.d.-a).

Definition 3.2. Consider an additive lattice + of C*-algebras and a

space-time (M, g). A map l : +loc ® @(M ) is called a realization of + on
(M, g) if @ : 5 l (+loc) , @(M ) is a net index set and if l is an order

isomorphism from +loc to @.

This concept is strongly related to the work of Bannier (1994), where

a topological space is constructed from an ordered set of algebras. However,
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some problems occur if we apply his construction to our situation. In particu-

lar, we do not get injective maps l in general. See the corresponding discussion

in Keyl (1996).
Given a realization l of a lattice + on a space-time (M, g), we can

construct the net (! l (2))2 P @ with ! l (2) : 5 l 2 1 (2). Hence we can use

realizations l to translate physical statements about (M, g) and the quantum

field theory described by the net (! l (2))2 P @ into statements in terms of +
alone. We will demonstrate this in the next two sections with two particu-

lar examples.

4. CAUSALITY

One way to describe the causal structure of a space-time (M, g) is the

binary relation p ’ g q, p, q P M on M, which is defined by: there is no causal

curve from p to q. It is easy to see that this relation is uniquely fixed by the

conformal equivalence class of g ( 5 {ef g | f P C ` (M, R )}). On the other
hand, the converse is true as well: the conformal equivalence class is uniquely

determined by ’ g , and due to the close relation between the conformal and

differentiable structure of Lorentz manifolds, even the differentiable structure

of M is fixed by ’ g (see Hawking et al., 1975; Keyl, 1996; and references

therein). It is therefore an interesting question whether ’ g can be translated

into a relation in a lattice of C*-algebras describing a quantum field theory
on (M, g).

The first step in this direction is the relation ’ g , @(M ) 3 @(M )

defined in equation (2). It is related to the relation ’ g between points by 21

’ g 22 Û p ’ gq " p P 21 " q P 22. Hence ’ g , @(M ) 3 @(M ) can be

recovered from ’ g , M 3 M and vice versa (this justifies our use of the

same notation).
Consider now a causal, additive net (!(2))2 P @(M) on a space-time (M,

g) and the corresponding lattice + [constructed according to equation (4)

with an appropriate index set @ , @ (M )]. The problem is to find a binary

relation ’ c on + such that !(21) ’ c !(22) holds iff 21 ’ g 22 is satisfied.

Since the net (!(2))2 P ; SB(}) is causal, a possible candidate for ’ c is

A1 ’ aA2: Û [A1, A2] 5 {0} (6)

However, there are physically relevant cases (e.g., massless fields on Minkow-

ski space) where ’ a is not the correct choice. Nevertheless ’ a is useful for
our purposes. The idea is not to compare ’ g directly with ’ a , but certain

hull operators associated to them. To define them, let us consider first the

complementations M . 2 j 2 ’ g , M and AI . A j A ’ g , AI associated

to ’ g and ’ a, which are uniquely determined by 21 ’ g 22 Û 21 , 2 ’ g
2 and
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A1 ’ a A2 Û A1 , A ’ a
2 . They give rise to the hull operators @(M) { 2 j

2 ’ g ’ g , M and + { A j A ’ a ’ a , AI. The idea is to use causally closed sets

@cc(M, g) : 5 {2 P @(M ) | 2 ’ g ’ g 5 2} (7)

and algebras

+cc
loc : 5 {A P +loc | A ’ a ’ a 5 A} (8)

and to consider only those models which have the property that 2 P @cc(M,
g) holds iff !(2) P +cc

loc is satisfied [this class contains all models derived

from free scalar fields according to equation (3); see Keyl (1996)]. In this

case we can try to characterize ’ c by the associated hull operator (defined
in the same way as ( ? ) ’ a ’ a), which should coincide with ( ? ) ’

a
’

a

. Let us

summarize the discussion up to now in the following definition:

Definition 4.1. Consider an additive lattice + of C*-algebras, a space-

time (M, g). A realization l of + on (M, g) is called causally admissible if

l (+cc
loc) 5 @cc(M, g). A lattice for which such a realization exists will be

called causally simple in the following.

The basic fact about a causally simple lattice is that there is essentially

only one causally admissible realization on it. To make this statement more

precise, let us define conformal equivalence of realizations:

Definition 4.2. Two realizations l 1, l 2 of an additive lattice of C*-

algebras + on the space-times (M1, g1) and (M2, g2) are called conformally
equivalent if there is a conformal transformation f : M1 ® M2 from (M1, g1)
to (M2,g2) such that f ( l 1(A)) 5 l 2(A) for all A P +loc.

With these notions we can formulate the following theorem (Keyl,

n.d.-a):

Theorem 4.3. All causally admissible realizations of a causally simple

lattice of C*-algebras are mutually conformally equivalent.

This theorem says that on a causally simple lattice of C*-algebras we
can define the binary relation ’ c simply by A1 ’ c A2. : Û l (A1) ’ g l (A2),

where l is a causally admissible realization of +. Obviously this definition

depends only on + and not on l . Therefore it must be possible to characterize

this relation without using a causally admissible realization l . For this purpose

we have to introduce two additional notions. The first one is the orthogonali ty
relation A1 ’ o A2 : Û inf+{A1, A2} 5 A0, which depends only on the order

structure of + (and not on the algebraic structure, in contrast to ’ a). The

second one is related to +cc
loc by the following proposition (Keyl, n.d.-a):

Proposition 4.4. Consider an additive lattice + of C*-algebras. Then

the set +cc : 5 +cc
loc ø {AI, A0} with +cc

loc defined as in equation (8) is a
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complete lattice, but not a sublattice of +. The supremum in +cc is given

by sup+cc {A1, A2} 5 (A1 ø A2)
’ a ’ a.

Now we can state the following theorem (Keyl, n.d.-a):

Theorem 4.5. Consider a causally simple, additive lattice + of C*-
algebras and a causally admissible realization of + on the space-time (M,
g). Then the relation ’ c , + 3 + with A1 ’ c A2 Û l (A1) ’ g l (A2) is

given by (A1, A2 P +cc
loc)

A1 ’ cA2: Û A1 ’ oA2

Ù (A3 , sup+cc
{A4 ø A5} Þ Ø (A3 ’ oA4 Ú A3 ’ oA5)

" A3 P +cc " A4 P +cc, A4 , A1 " A5 P +cc, A5 , A2) (9)

if sup+ {A1, A2} Þ AI holds.

The most interesting consequence of this theorem is that the definition

of ’ c given in (9) makes sense even if + is not causally simple. Therefore

we have a possibility to speak about causality without explicit reference to

Lorentzian manifolds or related concepts (such as causal spaces).

5. OBSERVERS

Now we want to discuss a second physical concept related to space-time:

observers. In general relativity an observer is described by its parametrized

worldline, i.e., a smooth, future-point ing, timelike curve g : (a, b) ® M, where

the parametrization of g is given by the observer ’ s clock. If he measures

some quantum observables in the time interval (t1, t2) , (a, b), they must

be in the local algebra

!(I 1 ( g (t1)) ù I 2 ( g (t2))) 5 : ! g (t1, t2) (10)

This construction leads to a subnet ! g (t1, t2), (t1, t2) , (a, b) of the net

(!(2))2 P @(M) and the question we want to ask in this section is whether the

curve g is uniquely determined by this subnet. To reformulate this statement

using the language developed in the last two sections, let us consider a

causally simple, additive lattice + of C*-algebras and a causally admissible
realization l . The problem is then to distinguish those subsets 7 of + which

admit a smooth (or at least continuous) timelike curve g such that l (7) 5
{! l (t1, t2) | (t1, t2) , (a, b)}. A useful tool for this purpose is the lattice +cc

introduced in Proposition 4.4.
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Definition 5.1. A subset 7 of an additive lattice of C*-algebras + is

called an observer if the following conditions are satisfied:

(i) 7 is, as an ordered set, isomorphic to (a P { 2 ` } ø R, b P R ø { ` })

7(a, b) : 5 {(t1, t2) , R | a # t1 # t2 # b} (11)

An order isomorphism k from 7 to 7(a, b) is called a parametrization
of 7.

(ii) 7 is a sublattice of +cc with A0 as minimal and k 2 1 (a, b) as

maximal element.
(iii) For all A1, A2 P 7 with A1 ’ o A2 and all B1, B2 P +cc

loc with Bi

, Ai we have

A , sup+cc{A1, A2} Þ A , sup+cc{B1, B2} (12)

for all A P 7 with A ’ o A1 and A ’ o A2

A pair consisting of an observer and a parametrization k will be called
a parametrized observer. In this case we will write ! k (t1, t2) : 5 k 2 1 (t1, t2)
for the inverse of k .

Let us discuss the idea behind this definition. Axiom (i) says that associ-

ated to each pair of times t1, t2 there is an algebra ! k (t1, t2). Self-adjoint

elements of this algebra are observables the observer can observe between
the times t1 and t2. The parametrization k represents here the clock our

observer uses. Changing the parametrization means changing the clock. It

can be shown that reparametrizations are simply done by homeomorphi sms

of the real line (Keyl, n.d.-b).

Axiom (ii) describes together with axiom (iii) the causal structure of

the observer. Let us discuss (ii) first. Since 7 is a sublattice of +cc, the
smallest element of 7 which contains two algebras A1, A2 P 7 as subalgebras

equals sup+cc {A1, A2}. Consider now a parametrization k of 7 and assume

that k (A1) 5 (t1,t2) and k (A2) 5 (t3, t4) holds with t1 , t2 , t3 , t4. Since

k is an order isomorphism, the supremum sup+cc{A1, A2} of A1, A2 in 7 is

mapped by k to (t1, t4). Hence we have for all t5, t6 with t2 , t5 , t6 , t3
the relation ! k (t5,t6) , sup+cc{A1, A2}, but A k (t5, t6) ’ o A1 and ! k (t5, t6)
’ o A2. According to (9), we get Ø (A1 ’ c A2). In other words, the regions

l (A1) and l (A2) are (if l is a causally admissible space-time realization) not

spacelike-separated. However, it is still possible that subregions of l (A1) and

l (A2) are. Physically this is not very reasonable, since each experiment we

can perform between the times t1, t2 should be able to influence all later

measurements. To see how axiom (iii) solves this problem, consider two
causally closed regions 21 , l (A1) and 22 , l (A2). The corresponding

algebras ! l (21) and ! l (22) are in +cc
loc and due to axiom (iii) the supremum

sup+cc {! l (21), ! l (22)} contains all ! k (t5, t6) with t2 , t5 , t6 , t3.
Applying again (9), we see that 21 and 22 are not spacelike-separated.



Nets of C*-Algebras 383

It is easy to check that the set of algebras ! l (t1, t2), (t1, t2) , (a, b)

forms an observer in the just discussed sense if g (a, b) , M is contained

in an open convex set. However, is the converse true as well? In other words:
If l is a causally admissible realization, is an observer 7 always mapped to

a set 7 l , g : 5 {! g (t1, t2) | (t1, t2) , (a, b)}? To answer this question we use

the following definition (Keyl, n.d.-b):

Definition 5.2. Consider an additive lattice of C*-algebras + and an

observer 7 , +.

(a) A subset 3 , 7 is called an event on 7 if a parametrization k :

7 ® 7(a, b) and a time t P (a, b) exist such that A P 3 holds iff t P k (A)

is satisfied. Obviously 3 is uniquely determined by k and t.
(b) The event 3 is covered by an A1 P +, if there is an A P 3 with

A , A1.

The idea behind this construction is that the set l (3) : 5 { l (A) | A P
3} should shrink to a point: ù A P 3 l (A) 5 {p}. In this case 3 is covered

by an algebra B P + if p P l (B). However, this idea does not work with

Definition 5.1. We need an additional, physically less motivated axiom, which

we will give in the next definition (Keyl, n.d.-b).

Definition 5.3. An observer 7 , + is called regular if the following

additional axiom is satisfied:

(iv) If a B P +cc does not cover an event 3, then there is an A P 3
with B ’ o A.

For regular observers we can apply now the procedure just sketched.
This leads to the following theorem (Keyl, n.d.-b).

Theorem 5.4. Consider a causally simple, additive lattice + of C*-

algebras, a causally admissible realization l of + on a space-time (M, g),

and a regular observer 7 , +. There exists a continuous, timelike curve g :

(a, b) ® M such that 7 5 {! g (t1, t2) | (t1, t2) , (a, b)} holds.

In other words, regular observers are (disregarding the differentiability

of g ) exactly those observers which admit a worldline g as described at the

beginning of this section. However, again we have found a definition which

does not make explicit reference to Lorentzian manifolds and which can

therefore be applied to lattices which are not causally simple.

6. CONCLUSIONS

We have seen that it is possible to reformulate at least some concepts

related to space-time in terms of lattices of algebras and it is very likely that
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the methods presented in this paper can be extended to yet-uncovered aspects

of space-time. This concerns especially time orderings, parallel transport,

and free fall.
Let us first discuss time orderings. If we have an additive lattice + of C*-

algebras and a causally admissible realization on a time-oriented Lorentzian

manifold (M, g), we can introduce a binary relation on +cc
loc by: A1 a A2 :

Û there is a future-pointing causal curve from a point in l (A1) to a point

in l (A2). Note that a is a pre-ordering, but not an ordering, since it is

reflexive and transitive, but not antisymmetric. (However, it is antisymmetric
if A1 ’ o A2 holds, so it is in some sense nearly an ordering.) This relation

is linked to ’ c defined in Theorem 4.5 by the condition A1 ’ A2 Û Ø (A1

a A2 or A2 a A1). Due to Theorem 4.3, a depends only on the time ordering

of (}, g), not on the realization l . Hence it is interesting to ask how such

a relation can be introduced without the help of causally admissible realiza-

tions, and which conditions + has to satisfy, such that it exists.
To treat parallel transport, observers are, due to their close relation to

timelike curves, a good prerequisite. Hence, consider a regular observer

7 , + with worldline g and the local algebra ! g (t1 2 e , t1 1 e ). Due to

the interpretation given in Section 5, a self-adjoint A1 P ! g (t1 2 e ,t1 1 e )

describes an observable measurable by the observer in the time interval
(t1 2 e , t1 1 e ). Obviously the corresponding measurement is done by a

certain measuring procedure which can be repeated at a later time. This leads

to a second observable A2 P ! g (t2 2 e , t2 1 e ). Hence we have for all t1,
t2 (at least if t2 . t1) a map a g

t1t2: ! g (t1 2 e , t1 1 e ) ® ! g (t2 2 e , t2, 1 e )

such that a g
t1,t2 (A1) 5 A2. It is very likely that these maps are related to the

field equations on which the theory is based and that they depend therefore
on the parallel transport along g . In addition we can interpret the a g

t1,t2 as

some kind of parallel transport of local observables A1 P ! g (t1 2 e , t1 1
e ) along g . If this interpretation is correct, it should be possible to characterize

geodesics (i.e., worldlines of observers in free fall) by special properties of

the a g
t1,t2.

Apart from these open questions, we have structures which are capable
of describing more general space-time concepts than Lorentzian manifolds,

since the definitions derived in Sections 4 and 5 make sense even if the

lattice considered cannot be related to a Lorentzian manifold by causally

admissible realization. Of course, it is very likely that the discussion of this

paper is still too special and too strongly related to classical space-time.

However, to get a reasonable description of space-time and quantum field
theory in a unique axiomatic scheme it is possible to further generalize

our constructions. For example, many considerations about quantum gravity

indicate that locality of quantum fields gets lost completely. This implies for

us that the relation ’ a used to define ’ c is no longer useful. In this case it
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natural to investigate how locality is violated and how this violation can be

interpreted physically. On the mathematical level this means to consider the

set {[A1, A2] | A1, A2 P +} of commutator algebras associated to a lattice
+ of algebras. A detailed study of particular models for quantum gravity (or

at least toy models, since realistic ones are at the time unavailable) may lead

on this basis to a generalization of the structures discussed in this paper.
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